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A Necklace of Wulff Shapes
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In a probabilistic model of a film over a disordered substrate, Monte-Carlo simulations
show that the film hangs from peaks of the substrate. The film profile is well approxi-
mated by a necklace of Wulff shapes. Such a necklace can be obtained as the infimum
of a collection of Wulff shapes resting on the substrate. When the random substrate is
given by iid heights with exponential distribution, we prove estimates on the probability
density of the resulting peaks, at small density.
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1. INTRODUCTION

A problem in the science of coating is to characterize the surface of a coated
material as function of the substrate surface and properties of the coating material
(polymer, resin, metal. . . ). The topography of a substrate has an important influ-
ence on the properties of the considered material in terms of lubrication, optical
properties, wetting. . . Moreover, it is often desirable to coat this substrate with a
thin film to protect the material. Of course, the topography of the thin film surface
and of the substrate do not have to be the same. This will be a function of the film
thickness.

One of the key questions in this problem is to get a clear understanding of the
pertinent variables appearing in the problem. It has long been recognised that the
roughness of the surface will play a crucial role, but, as is often the case when we do
not know exactly what we are looking for, different roughness definitions have been
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proposed. Just to quote a few, the rms roughness as introduced by physicists and
chemists using Atomic Force Microscopy (AFM), Wenzel’s roughness introduced
in wetting studies, roughness in terms of correlation length exponent... Moreover, it
is easily seen that many of these definitions depend on the scale of the performed
measurements: the AFM roughness at the nanometric scale is different from
the roughness at the micron scale. One also has in mind the famous lotus leaf
example where a suitable combination of topographies at different scales lead to
a superhydrophobic surface. Clearly, there is a need for a model study to clarify
the links between the two topographies for a given thickness.

This is the motivation of the present work where, in spite of the simplicity of
the model, we do find a non-trivial qualitative and quantitative relation between the
substrate and film random geometries, notably when the film tension is sufficiently
large.

A statistical mechanical model of a film requires at least two parameters, one
associated with a surface tension, the other with a pressure difference or chemical
potential controlling the film thickness. The version of the Solid-On-Solid model
introduced by Abraham and Smith(1,2) is the simplest such model. Abraham and
Smith give an exact solution, showing the height distribution and the correlation
length, with critical exponents and prefactors. The critical behaviour of Z+-valued
recurrent random walks, generalizing Abraham and Smith’s model, was recently
proved to be universal by Hryniv and Velenik(7).

In Section 2, we use Abraham and Smith’s model first to generate a disordered
substrate, which is quenched, and then, with a different set of parameters, to
thermalize a film on top of the substrate. Numerical simulations show that typical
configurations look like a necklace of Wulff shapes suspended from the peaks of
the substrate. This motivates Section 3, where only the substrate is random, and the
film is defined as the infimum of a collection of Wulff shapes over the substrate.
In Section 4 we prove estimates on the density of relevant substrate peaks, when
the pressure difference goes to zero. In Section 5 we give a Gibbs formulation for
the probability density of substrate peak localizations and heights.

2. SOLID-ON-SOLID FILM OVER QUENCHED SOLID-ON-SOLID

SUBSTRATE

The substrate is a one-dimensional Solid-On-Solid model with Hamitonian

H1 = J1

∑
|i− j |=1

|h1
i − h1

j | + K1

∑
h1

i (2.1)

where h1
i ∈ R+ is the height of the substrate surface at point i ∈ Z. It can also

represent the height of a first coating, fixed before the later deposit of a film.
The substrate being generated according to the Gibbs measure with

Hamiltonian (2.1) at temperature kT = 1, and then quenched, a film is deposited
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Fig. 1. Substrate J1 = 1, K1 = 0.5; film J2 = 30 and from top to bottom K2 = 0.2, 0.5, 1, 2.

and thermalized according to the Gibbs measure with Hamiltonian

H2 = J2

∑
|i− j |=1

|h2
i − h2

j | + K2

∑
h2

i (2.2)

at temperature kT = 1. The film height h2
i ∈ R+ at point i obeys h2

i ≥ h1
i . This

is a grand canonical ensemble where the film volume is controlled by K2 while
being allowed to fluctuate. In the thermodynamic limit, the properties will be the
same as if obtained from a fixed volume ensemble where

∑
(h2

i − h1
i ) is fixed.

The resulting model of a film on a quenched substrate is studied by Monte-
Carlo simulation with periodic boundary conditions and a heat bath algorithm.
Fig. 1 shows one substrate h1 and, on top, thermal averaged films h̄2 at various
values of the pressure K2.

For small enough K2/J2, the film appears to hang as from a set of telegraph
poles of random heights. Between two successive poles, the film profile can be
checked to be very near a Wulff shape associated with (2.2) at the corresponding
value of K2. Indeed Fig. 2 shows a portion of substrate, a thermal averaged film
with J2 = 5 and K2 = 0.125, and a necklace of Wulff shapes: Each piece is a
translate of one and same Wulff shape, with the same J2 and K2 as the film. The
parametric equations of the Wulff shape are3,4

x(tan θ ) = − 1
K2

d
d(tan θ) σ̃ (tan θ )

z(tan θ ) = − 1
K2

(
σ̃ (tan θ ) − tan θ d

d(tan θ) σ̃ (tan θ )
) (2.3)
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Fig. 2. Substrate J1 = 0, K1 = 0.5; film (solid line) and Wulff shapes J2 = 5, K2 = 0.125.

where σ̃ (tan θ ) is the projected surface tension, which for the Solid-On-Solid
model takes the form4

σ̃ (tan θ ) = f (tan θ ) − log
( f (tan θ ) + 2

J2

)
(2.4)

with

f (tan θ ) = (
1 + (J2 tan θ )2

)1/2 − 1 (2.5)

The Wulff necklace is clearly a good approximation, except when the sub-
strate rises near but below the film surface, like near x � 80 or x � 140 on Fig.
2, which causes some entropic repulsion.

As K2 decreases, the number of substrate peaks visible on the film profile
decreases (see Fig. 1). The relevant peaks are large deviations events of the sub-
strate disorder. This indicates that the relevant scale to coat or to (de)wet a surface
with a given film thickness is not only a function of the x-scale of the topography
but also depends on the presence or absence of large peaks. It is thus interesting
to develop tools to characterize this peak density for a given substrate.

In the following sections, we simplify the model in order to understand the
selection by the film of substrate peaks as K2 varies. When the substrate has short
range correlations, its correlation length may be taken as a basic unit of length.
A natural simplification is to assume that it is also the lattice unit, and that the
substrate is i.i.d. on this scale: J1 = 0. Then, by scaling the unit of height, there
is no loss of generality in taking K1 = 1, leaving two independent parameters J2

and K2.
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The second and main simplification is to consider that when a Wulff shape
between two peaks hangs strictly above the substrate between the two peaks, then
it is not affected by the substrate between the two peaks. Some fluctuation effects
(entropic repulsion) are neglected here, an approximation which is better justified
when J2 is large.

Our aim will be to estimate the density of relevant peaks as function of K2,
with different kinds of Wulff shapes. And further to get an idea of the probability
distribution of peak localizations and heights.

3. A NECKLACE OF WULFF SHAPES

Let hi , i ∈ Z be an iid sequence of exponentially distributed random variables
of mean 1, and let

S = {(i, z) ∈ Z × R : z ≤ hi } (3.1)

be the random set representing the substrate. The upper index 1 for the substrate
height h1

i ≡ hi is now omitted.
Let 1 < a ≤ ∞ and let W : ] − a, a[→ R be a continuous even function,

strictly increasing on [0, a[ , with W (0) = 0. If a = ∞, we require W (x) > −b +
λ|x |α for some b, λ, α > 0, for all x . Examples:

Cone : W (x) = λ|x |
Parabola : W (x) = λx2

Semi − circle : W (x) = λ−1 − √
λ−2 − x2

SOS Wulff shape
(
z(x) = (2.3)

)
: W (x) = z(x) − 1

K2
log 2

J2

(3.2)

with a = λ−1 for the circle and a = J2/K2 for the SOS Wulff shape. Translating
the graph of such a function by (x∗, h∗) ∈ R

2 will define W (x∗, h∗; ·), so that
W (0, 0; ·) = W (·) and

W (x∗, h∗; x) = h∗ + W (x − x∗) (3.3)

The graph of this function, as a subset of R
2, is denoted W (x∗, h∗). The film over

the substrate (or the coating of the substrate) is then defined almost surely as the
graph I of the function I (x) defined in the following proposition:

Proposition 3.1. Under the hypotheses on W (·) stated before (3.2), let

I (x) = inf
{

W (x∗, h∗; x) : (x∗, h∗) ∈ R
2, |x∗ − x | < a, W (x∗, h∗) ∩ S = ∅

}
(3.4)
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Fig. 3. I (x) with W (x) = λ|x |.

whenever the infimum is taken over a non-empty family, and I (x) = +∞ if
W (x∗, h∗) ∩ S 
= ∅ ∀ (x∗, h∗). Then, almost surely, the infimum is attained and
I (x) < ∞ ∀x ∈ R.

Proof. Straightforward. The hypothesis on W (·) could be weakened to W (x) >

−b + λ log |x | for suitable λ. In the following, we shall instead strengthen the
hypothesis to make W convex. Examples are shown in Fig. 3 and Fig. 4. �

In words: We have a “Wulff shape,” symmetric about a vertical axis. Above
each x∗ ∈ R, a “Wulff shape” is taken down from +∞, until it touches the substrate.
The film is the infimum of the resulting collection of Wulff shapes. The film height
I ( j) at an integer point j models the thermal average of h2

j in the preceding section.
A Wulff shape in one dimension is a solution to the second order differential

equation for the function W (x),

d

dx

d

d
(
dW/dx

) σ̃
(
dW/dx

) = K2 (3.5)

where σ̃ (·) is the projected surface tension, or interface free energy per unit
length of interface projected onto the x-axis, as function of the slope dW /dx .
The parameter K2, conjugate to the film volume

∑
h2

i in (2.2), is the pressure, or
pressure difference with the medium above, �p. The surface tension should have
convexity properties such that the solution W (x) to (3.5) is a convex function, in
fact typically strictly convex, which we assume henceforth, except for the special
case W (x) = λ|x |.

Fig. 4. I (x) with W (x) semi-circular.
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A Hamiltonian of the form (2.2) but quadratic in (h2
i − h2

j ) gives

σ̃
(
dW/dx

) = J2
(
dW/dx

)2 + constant

so that a solution to (3.5) in this case is W (x) = λx2 with λ = K2/(4J2). Solutions
to the Wulff equation (3.5) generally scale as

WK2 (x) = K −1
2 W1(K2x) (3.6)

where W1(x) is a solution to (3.5) with K2 = 1. The semi-circular shape in (3.2)
follows this scaling, with λ proportional to K2.

When a Wulff shape is taken down from infinity above x = 0 until it touches
the substrate S, say at ( j0, h j0 ) with j0 ≤ 0 for definiteness, it stops as

W (0, h∗(0); x) = h j0 − W ( j0) + W (x) (3.7)

We can then let it slide to the right by an amount x∗, keeping contact with ( j0, h j0 ),
as

W (x∗, h∗(x∗); x) = h j0 − W ( j0 − x∗) + W (x − x∗) (3.8)

At a given x > 0, this is a strictly decreasing function of x∗ so long as x∗ ≤ x . It
is also a strictly decreasing function of x∗ for x∗ > x , provided W (·) is a strictly
convex function: For y∗ > x∗,

W (y∗) − W (y∗ − x)

x
>

W (x∗) − W (x∗ − x)

x
(3.9)

So we let the Wulff shape slide to the right keeping contact with ( j0, h j0 ) until it
touches a second point (k0, hk0 ):

hk0 − h j0 = W (k0 − x∗) − W ( j0 − x∗) (3.10)

We thus get the unique Wulff shape going through ( j0, h j0 ) and (k0, hk0 ), which
we denote W ( j0, h j0 , k0, hk0 ; x). If the first contact point is (k0, hk0 ) with k0 ≥ 0,
instead of ( j0, h j0 ) with j0 ≤ 0, the same construction works symmetrically, sliding
to the left. In any case we get a Wulff shape at a minimal height, so that, almost
surely,

I (x) = W ( j0, h j0 , k0, hk0 ; x), j0 ≤ x ≤ k0 (3.11)

The proposition below follows easily:

Proposition 3.2. Let W : R → R be a continuous even function, strictly convex
with W (0) = 0, or W (x) = λ|x | with λ > 0. Then I (x) defined in (3.4)(3.1) is
also, almost surely,

I (x) = sup
{

W ( j, h j , k, hk ; x) : j, k ∈ Z, j ≤ x ≤ k
}

(3.12)
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Proof. Starting from (3.4), we have I (x) = W (x∗, h∗; x). This must be also I (x) =

W ( j, h j , k, hk ; x) for some j, k: Otherwise (3.7-11) would give a smaller I (x).
And this W ( j, h j , k, hk ; x) must be the supremum, otherwise it would intersect S
(as shown in more detail in the proof of Lemma 5.1 below). �

Remark. For the first two examples in (3.2), we have respectively

W ( j, h j , k, hk ; x) = max
{

h j − λ(x − j), hk + λ(x − k)
}

(3.13a)

W ( j, h j , k, hk ; x) = λ(x − j)(x − k) + k − x

k − j
h j + j − x

j − k
hk (3.13b)

The random interface I (x) also defines, as a marginal, a point process of interest:

Proposition 3.3. Under the same hypotheses as in Proposition 3.2, let

B = I ∩ S =
{

i ∈ Z : I (i) = hi

}
(3.14)

Then

B = {i ∈ Z : hi ≥ W ( j, h j , k, hk ; i) ∀ j < i < k} (3.15)

and, almost surely, B can be written as B = {bn}n∈Z with bn+1 − bn ≥ 1 ∀n, and
b0 = min{bn : bn ≥ 0}.

Proof. If i belongs to (3.14) then Proposition 3.2 implies that it belongs also to
(3.15). If i belongs to (3.15), then we start from

hi = W (i, hi ; i) ≥ W ( j, h j , k, hk ; i) ∀ j < i < k

and slide W (i, hi ; i) to the right following (3.7-11) until it touches S at (k, hk)
with hi = W (i, hi , k, hk ; i). Then Proposition 3.2 implies that i belongs also to
(3.14).

The set B is also the set of points which can be obtained like j0 or k0 in
(3.5)-(3.8), starting from any x ∈ R, not just x = 0. �

4. ESTIMATES

Proposition 4.1. Let W (x) = λ|x |. Then

lim
λ↘0

P(0 ∈ B)

λ
= 1

2
(4.1)
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Proof.

P(0 ∈ B) = P

(
h0 ≥ max

{
h j − λ(x − j), hk + λ(x − k)

} ∀ j < 0 < k
)

= P
(
h0 ≥ hi − λ|i | ∀ i ∈ Z∗

)

= ∫ ∞
0 dx e−x

∏∞
i=1

(
1 − e−x−λi

)2

(4.2)
— Upper bound:

∞∏
i=1

(
1 − e−x−λi

)2
< e−2e−x

∑∞
i=1 e−λi = e−2e−x e−λ

1−e−λ (4.3)

so that

P(0 ∈ B) <

∫ ∞

0
dx e−x e−2e−x e−λ

1−e−λ = 1 − e−λ

2e−λ

(
1 − e−2 e−λ

1−e−λ

)
(4.4)

— Lower bound: For x > 1, we can use 1 − ε > e−ε−ε2
, with ε = e−x−λi . Then

∞∏
i=1

(
1 − e−x−λi

)2
> e−2e−x

∑∞
i=1 e−λi −2e−2x

∑∞
i=1 e−2λi = e−2e−x e−λ

1−e−λ −2e−2x e−2λ

1−e−2λ (4.5)

so that

P(0 ∈ B) >
∫ ∞

1 dx e−x e−2e−x e−λ

1−e−λ −2e−2x e−2λ

1−e−2λ

>
∫ λ ln(λ−1)

0 dy e−2y e−λ

1−e−λ −2y2 e−2λ

1−e−2λ

> 1−e−λ

2e−λ

(
1 − e−2λ ln(λ−1) e−λ

1−e−λ

)
e−2(λ ln(λ−1))2 e−2λ

1−e−2λ

(4.6)

The upper and lower bounds together imply (4.1).

Proposition 4.2. Let W (x) = λx2. Then ∃ a, b > 0 such that ∀ 0 < λ < 1/4

a
λ

ln(λ−1)
< P(0 ∈ B) < 3

√
λ

π
+ bλ (4.7)

Remark. In view of the proof of the upper bound, see below, we expect that
P(0 ∈ B) is of order

√
λ for small λ.

Proof.

P(0 ∈ B) = P
(
h0 ≥ W (− j, h− j ; k, hk ; 0) ∀ j, k ≥ 1

)
(4.8)



232 De Coninck, Dunlop, and Huillet

with

W (− j, h− j ; k, hk ; 0) = k

j + k
h− j + j

k + j
hk − λ jk (4.9)

— Upper bound:

P(0 /∈ B|h0 = x) = P
( ∃ j, k > 0 : x < W (− j, h− j ; k, hk ; 0)

)
> P

( ∃ j, k > 0 : h− j > x + λ j2, hk > x + λk2
)

=
(

1 − ∏∞
j=1 P

(
h− j > x + λ j2

) )2

(4.10)

where we used

W
(− j, x + λ j2; k, x + λk2; 0

)
> x (4.11)

and W (· · ·) increasing in h− j and in hk . Then

∞∏
j=1

P
(

h− j > x + λ j2
) =

∞∏
j=1

(
1 − e−x−λ j2 )

< e−e−x
∑∞

j=1 e−λ j2

< e−e−x ( 1
2

√
π
λ
−1)

(4.12)
so that

P(0 ∈ B) <
∫ ∞

0 dx e−x
(

2e−e−x ( 1
2

√
π
λ
−1) − e−2e−x ( 1

2

√
π
λ
−1)

)

= ∫ 1
0 dy

(
2e−y( 1

2

√
π
λ
−1) − e−2y( 1

2

√
π
λ
−1)

)

= 3
√

λ
π

1+ 1
3 e

2−
√

π
λ

1−2
√

λ
π

for λ < π/4

(4.13)

— Lower bound: From the Harris-FKG inequality(5,6),

P
( ∀ j, k > 0 : x ≥ W (− j, h− j ; k, hk ; 0)

) ≥ ∏∞
j=1 P

( ∀k > 0 : x
≥ W (− j, h− j ; k, hk ; 0)

) (4.14)

P
( ∀k > 0 : x ≥ W (− j, h− j ; k, hk ; 0)

) = ∫ ∞
0 dy e−y

∏∞
k=1

× P
(

x ≥ W (− j, y; k, hk ; 0)
)

>
∫ x+λ j2

0 dy e−y
∏∞

k=1

(
1 − e−λk2− k

j (x+λ j2−y)−x
)

>
∫ x+λ j2

0 dy exp
(
−y − ∑∞

k=1 e−λk2− k
j (x+λ j2−y)−x − ∑∞

k=1 e−2λk2− 2k
j (x+λ j2−y)−2x

)
(4.15)

where we used 1 − ε > e−ε−ε2
, with ε < e−x and x ≥ 1 henceforth. Then

∞∑
k=1

e−λk2− k
j (x+λ j2−y)−x

<

∞∑
k=1

e− k
j (x+λ j2−y)−x = e−x

e
x+λ j2−y

j − 1
<

je−x

x + λ j2 − y

(4.16)
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P
( ∀k > 0 : x ≥ W (− j, h− j ; k, hk ; 0)

)
>

∫ x+λ j2

2
0 dy e

−y− je−x

x+λ j2−y

> e
− je−x

x+λ j2

1+ 2 je−x

(x+λ j2)2

(
1 − e

− x+λ j2

2 − je−x

x+λ j2

)

> exp
(
− je−x

x+λ j2 − 2 je−x

(x+λ j2)2

− e
− x+λ j2

2 − je−x

x+λ j2 − e
−(x+λ j2)− 2 je−x

x+λ j2

)
(4.17)

where (1 − αy)−1 < 1 + 2αy for 0 < αy < 1/2 has been used before integration
over y, and then again 1 − ε > e−ε−ε2

and also 1/(1 + X ) > e−X . Now

∏λ−1

j=1 P
( ∀k > 0 : x ≥ W (− j, h− j ; k, hk ; 0)

)
> exp

(
− e−x

2λ
ln x+λ−1

x+λ
− e−x

2
√

λx

− e−x

2λ(x+λ) − e−x√
λx3

−
√

2π
λ

e−x/2 − √
π
λ

e−x − 2
)

(4.18)
The sums over j ∈ Z+ in the exponential were bounded by corresponding integrals
over [1, λ−1] or R+ plus a bound of the maximum of the integrand. Then with
λ < 1/4 and x > 4,

∏λ−1

j=1 P
( ∀k > 0 : x ≥ W (− j, h− j ; k, hk ; 0)

)
> exp

(
− e−x

2λ
ln λ−1s − e−x

λ
−

√
2πe− x

2√
λ

− 2
) (4.19)

For j > λ−1, the range of integration in (4.15) is chosen as 0 < y < x + λ j2 −
j ln 2. Then only the first few k = 1, 2, . . . play a role for the event ∃ k : x <

W (− j, y; k, hk ; 0). Precisely:

∞∑
k=1

e−λk2− k
j (x+λ j2−y)−x

<
e−x

e
x+λ j2−y

j − 1
< e−x− x+λ j2−y

j + 2e−x−2 x+λ j2−y
j (4.20)

∫ x+λ j2− j ln 2
0 dy exp

(
−y − e−x− x+λ j2−y

j − 2e−x−2 x+λ j2−y
j

)

>
∫ x+λ j2− j ln 2

0 dy e−y
(

1 − 3e−x− x+λ j2−y
j

)

= 1 − e−(x+λ j2− j ln 2) − 3 e
−x− x+λ j2

j

1−1/j

(
1 − e−(x+λ j2− j ln 2)(1−1/j)

)
> 1 − 5e−x−λ j > exp(−5 e−x−λ j − 25 e−2x−2λ j )

(4.21)
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for λ < 1/4 and x > 2. Then∏
j>λ−1 P

( ∀k > 0 : x ≥ W (− j, h− j ; k, hk ; 0)
)

>
∏

j>λ−1 exp(−5 e−x−λ j

−25 e−2x−2λ j ) ≥ exp
(
− 5e−x−1

1−e−λ − 25e−2x−2

1−e−2λ

)
(4.22)

Putting together (4.19) and (4.22) and integrating with d(e−x ) over an interval

α
λ

ln(λ−1)
< e−x < β

λ

ln(λ−1)
(4.23)

yields the lower bound and completes the proof of the proposition.

5. GIBBS MEASURE

So far the equivalent definitions of B, through (3.14) or (3.15), require a knowledge
of the whole system in order to decide whether a point i ∈ B. Here we will define
local Gibbs factors where (bn, hbn ) is coupled to (bn−1, hbn−1 ) and (bn+1, hbn+1 )
only. We first derive an equivalent definition of B:

Proposition 5.1. B defined in Proposition (3.3) is almost surely the only countable
ordered subset of Z, denoted B = {bn}n∈Z, with b0 = min{bn ≥ 0}, obeying the
following two conditions:

hi < W (bn, hbn , bn+1, hbn+1 ; i) ∀ bn < i < bn+1 (5.1)

hbn ≥ W (bn−1, hbn−1 , bn+1, hbn+1 ; bn) ∀ n ∈ Z (5.2)

B is the minimal subset of Z such that the collection of Wulff shapes suspended
from this subset lies above the rest of the substrate, i.e. the minimal subset of Z

satisfying (5.1).
Proof. From Propositions (3.2) and (3.3), B is almost surely the only countable
ordered subset of Z satisfying (5.1) and

hbn ≥ W (bn−p, hbn−p , bn+q , hbn+q ; bn) , ∀ n ∈ Z, p ≥ 1, q ≥ 1 (5.2′)

We only need to prove that (5.2) implies (5.2′). Let us assume two instances of
(5.2),

hb1 ≥ W (hb0 , hb2 ; b1) (5.3a)

hb2 ≥ W (hb1 , hb3 ; b2) (5.3b)

and, contradicting (5.2′) with p = 2, q = 1,

hb2 < W (hb0 , hb3 ; b2) (5.3′)
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Let us show that (5.3a − b) with the absurd (5.3′) would imply that W (hb1 , hb3 ; ·)
and W (hb0 , hb2 ; ·) have two intersections. Indeed

W (hb1 , hb3 ; b1) ≥ W (hb0 , hb2 ; b1) using (5.3a)

W (hb1 , hb3 ; b2) ≤ W (hb0 , hb2 ; b2) using (5.3b)

W (hb1 , hb3 ; b3) = W (hb0 , hb3 ; b3)

= W (hb0 , W (hb0 , hb3 ; b2); b3)

≥ W (hb0 , hb2 ; b3) using (5.3′)

so that W (hb1 , hb3 ; ·) is higher than W (hb0 , hb2 ; ·) at b1 and b3 and lower at b2, which
implies two intersections, impossible for two Wulff shapes which are translates of
one another. Therefore (5.3′) cannot hold true; (5.2) with p = 1, q = 1 implies
(5.2) also with p = 2, q = 1. The argument extends easily to all p, q and the proof
of Proposition (5.1) is readily completed.

Let ln = bn − bn−1 and xn = hbn . A Gibbs measure formulation for
{ln, xn}n∈Z starts from i.i.d. a priori measures: Counting measure on Z+ for each
ln , exponential distribution exp(−xn)dxn on R+ for each xn . And a product of
local Gibbs factors,∏

n

F(xn, ln+1, xn+1)
∏

n

G(xn−1, ln, xn, ln+1, xn+1) (5.4)

with

F(x0, l1, x1) =
l1−1∏
i=1

(
1 − e−W (0,x0,l1,x1;i)

)
(5.5)

and

G(x−1, l0, x0, l1, x1) = 1x0 ≥ W (−l0,x−1,l1,x1;0) (5.6)

Let us define explicitly a finite volume Gibbs measure with free boundary
conditions:

Proposition 5.2. Let hi , i ∈ Z be an iid sequence of exponentially distributed
random variables of mean 1. Let W : R → R be a continuous even function,
strictly convex with W (0) = 0. Let

I[0,L](i) = sup
{

W ( j, h j , k, hk ; i) : 0 ≤ j ≤ i ≤ k ≤ L
}

(5.7)

and

B[0,L] =
{

i ∈ [0, L] ∩ Z : I[0,L](i) = hi

}
= {b0, . . . , bN } (5.8)
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with b0 = 0, bN = L, and N ≥ 1. Let ln = bn − bn−1 and xn = hbn . Then{
N , {l1, . . . , lN }, {x0, . . . , xN }

}
is distributed according to

	−1
[0,L]

N∏
0

dxne−xn

N−1∏
0

F(xn, ln+1, xn+1)
N−1∏

1

G(xn−1, ln, xn, ln+1, xn+1) (5.9)

where the partition function is

	[0,L] = ∑L
N=1

∑
l1...lN

∫ ∏N
0 dxne−xn

∏N−1
0 F(xn, ln+1, xn+1)∏N−1

1 G(xn−1, ln, xn, ln+1, xn+1)
(5.10)

and the sum over the positive integers l1 . . . lN is constrained by l1 + . . . + lN = L.
Proof. Proposition 5.2 is a simple corollary of Proposition 5.1.
Such a model is solvable in principle. A natural first step is to change to a

pressure ensemble with exp(−pL) and L random in order to get rid of the global
constraint over l1 . . . lN .
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